

August 20, 2021 Coneco Project No. 3395.1.003

Mr. Rick Lincoln Shinglemill LLC 4 First Street Bridgewater, Massachusetts 02324

RE: Groundwater Sampling Summary Letter

Shinglemill Apartments 75-79 Pond Street Rockland, Massachusetts

Dear Mr. Lincoln:

Coneco Engineers & Scientists, Incorporated (Coneco) presents the following summary of environmental sampling activities and analytical results for the above-referenced property, hereinafter, the "Site." The location of the Site is depicted on Figure 1 and pertinent Site features, including groundwater monitoring well and test pit sampling locations, are depicted on Figure 2, appended to this report for reference.

According to the Rockland Assessor's Office, the Site consists of one 28.6-acre parcel of land identified as 75-79 Pond Street in Rockland, Massachusetts. The Site currently consists of undeveloped wooded land in a mixed-use residential and commercial portion of Rockland, Massachusetts. Shinglemill LLC is planning to develop a multi-tenant residential apartment complex at the Site. Three previously-installed monitoring wells, identified as WELL-1, WELL-2, and WELL-3, are located in the southern portion of the Site. Photographs of the monitoring wells are appended to this report for reference.

Groundwater Sampling

Coneco conducted groundwater sampling activities at the Site on April 4, 2019 and July 15, 2021. Groundwater sampling on April 4, 2019 was limited to the collection of a sample from monitoring well WELL-1 (identified at that time as MW-01). The April 2019 groundwater sample collected from WELL-1 was submitted to Con-Test Analytical Laboratory, a Massachusetts and National Environmental Laboratory Accreditation Program (NELAP)-certified analytical laboratory located in East Longmeadow, Massachusetts, to be analyzed for volatile organic compounds (VOCs) by the United States Environmental Protection Agency (EPA) Method 8260, dissolved and total iron, manganese, and arsenic, nitrate, nitrite, coliform bacteria, radionuclides, conductivity, pH, and hardness. The groundwater sample was preserved as follows: VOC in 40-milliliter (mL) VOA vials preserved with hydrochloric acid (HCl); dissolved and total metals in 250-mL plastic containers preserved with nitric acid; nitrate, nitrite, pH, and conductivity in a 1-L plastic unpreserved container; radionuclides in a 1-L plastic container preserved with nitric acid; coliform bacteria in 100-mL sterile plastic containers; and hardness in a 500-mL plastic container preserved with HCl, in accordance with standard field collection and preservation techniques. Samples were either kept on ice

in a cooler or in a refrigerator cooled to 4 degrees Celsius during transport from the field to the laboratory. Laboratory analytical documentation is appended for reference.

Prior to groundwater sampling activities on July 15, 2021, Coneco utilized a Solinst[®] water level indicator to gauge pre-existing monitoring wells WELL-1, WELL-2, and WELL-3 for depth to groundwater. Depth to water was measured ranging from 2.03 to 4.19 feet below surface grade in the monitoring wells. No non-aqueous phase liquid was observed in the wells during the gauging and sampling activities. Groundwater quality parameters were measured during sampling using an Oakton® Multi-Parameter Meter. A summary of the groundwater field screening measurements is included in Table 1. Groundwater sampling field sheets are enclosed for reference. Monitoring well locations are depicted on Figure 2.

Table 1 - Tabulation of Groundwater Monitoring Well Data: July 15, 2021										
Monitoring Well	Depth to Water	Well Depth	Temperature	pН	Conductivity					
WELL-1	3.21		18.1	8.14	1,128					
WELL-2	4.19	15.08	20.8	5.71	163					
WELL-3	2.03		22.4	9.93	222					
, ,	a presented in feet below									

emperature presented in degrees Celsius.

3) Conductivity measured in microsiemens.

4) -- indicates well depth was not measured.

The groundwater samples collected from monitoring wells WELL-1, WELL-2, and WELL-3 on July 15, 2021 were submitted to Alpha Analytical, a Massachusetts and NELAP-certified analytical laboratory located in Mansfield, Massachusetts, to be analyzed for Per- and Polyfluoroalkyl Substances (PFAS) by EPA Method 537.1. The groundwater samples were preserved in 250-mL plastic containers in accordance with standard field collection and preservation techniques. Samples were either kept on ice in a cooler or in a refrigerator cooled to 4 degrees Celsius during transport from the field to the laboratory. Laboratory analytical documentation is appended for reference. Laboratory analytical results for the groundwater samples collected on April 4, 2019 and July 15, 2021 are presented in Table 2.

Table 2 - Groundwater Analytical Results (Detected Analytes Only)								
Analyte	WELL-1/ MW-01	WELL-2	WELL-3	RCGW-1				
	April 4, 201	9						
VOCs by EPA Method 8260 (μg/L)								
Acetone	26			6,300				
Bromodichloromethane	1.1			3				
Chlorodibromomethane	0.60			2				
Chloroform	7.3			50				
Chloromethane	3.6			1,000				
Total Metals (µg/L)								
Iron	17,000			NS				
Manganese	160			NS				
Dissolved Metals (µg/L)								
Arsenic	1.1			10				
Iron	1,800			NS				
Manganese	25			NS				
	July 15, 202	21						
PFAS by EPA Method 537.1 (ng/L)								
Perfluorohexanoic acid (PFHxA)	<1.89	<1.88	2.63	NS				
Perfluorohexanesulfonic acid (PFHxS)*	2.20	<1.88	<1.86	See ∑ below				
Perfluorooctanoic acid (PFOA)*	2.78	2.78	3.36	See ∑ below				
Perfluorooctanesulfonic acid (PFOS)*	3.52	8.03	1.97	See ∑ below				
\sum regulated PFAS compounds	8.5	10.81	5.33	20				

- Notes: 1) RCGW-1 RCs are listed in 310 CMR 40.1600.
 - 2) Analytical results and RCs are reported in micrograms per liter (µg/L) or nanograms per liter (ng/L) as indicated.
 - 3) -- indicates well not analyzed for specified analyte.
 - 4) NS indicates that a Reportable Concentration has not been promogulated for the specified analyte.
 - 5) < indicates the analyte was not detected above the specified laboratory quantification limit.
 - 6) Analytes with an asterisk (*) indicate compounds regulated by the MassDEP, which include PFDA, PFHpA, PFHxS, PFNA, PFOS and PFOA.

Laboratory analysis of the groundwater sample collected from WELL-1 on April 4, 2019 did not identify concentrations of analyzed compounds exceeding the applicable RCGW-1 Reportable Concentrations (RCs). Laboratory analysis of the groundwater samples collected from the on-Site monitoring wells on July 15, 2021 did not identify total concentrations of the MassDEP regulated PFAS compounds exceeding the applicable RCGW-1 RC.

Test Pit Advancement

On October 2 and 3, 2019, Coneco oversaw the excavation of fifteen (15) test pits throughout the Site, designated TP-1 through TP-15. Test pit locations were selected to facilitate a geotechnical evaluation of the sub-strata and observation of environmental conditions. The

test pits were advanced to depths ranging from 7.5 to 11 feet below grade. Groundwater was encountered in the test pits at depths ranging from 3 to 10 feet below grade.

Observations made during the performance of test pit advancement indicated the presence of overburden stratigraphy comprised primarily of loam and sand. Coneco did not note olfactory or visual evidence of a potential release of oil or hazardous material (OHM) at the Site during the advancement of the test pits. Based on visual and olfactory observations made during the completion of the exploratory test pits, Coneco did not submit soil samples for laboratory analysis.

Analytical Data Quality Assurance and Quality Control

Coneco has reviewed laboratory procedures, field sample Quality Assurance/Quality Control (QA/QC), and laboratory reporting requirements for analytical data used in support of assessment and evaluation decisions at the Site pursuant to MassDEP's Compendium of Quality Assurance and Quality Control Requirements and Performance Standards for Selected Analytical Methods Used in Support of Response Actions for the Massachusetts Contingency Plan (MassDEP Publication WSC-02-320). This Compendium of Analytical Methods (CAM) provides (a) information and guidance to all parties on analytical and data quality issues, and (b) requirements and specifications for those parties who wish to obtain "Presumptive Certainty" for satisfying the data quality requirements of the Massachusetts Contingency Plan (MCP) at 310 CMR 40.0017 and 310 CMR 40.0191(2)(c).

Groundwater sample collection, preservation, and logging procedures at the Site were conducted in accordance with Coneco's standard operating procedures, the *Standard Reference for Monitoring Wells*, the CAM guidelines, and the MCP. Laboratory procedures conducted by Con-Test and Alpha included method-specific QA/QC requirements and performance standards. Coneco's review of laboratory documentation, including analytical results, narratives, and chain-of-custodies provided by Con-Test and Alpha for groundwater samples collected from the Site, identified no departures from the requirements specified at 310 CMR 40.0017 and 40.0191.

Coneco evaluated information provided by Con-Test and Alpha concerning sample integrity, chain-of-custody procedures, quality assurance and quality control, necessary report components, and identified QA/QC flags for the submitted groundwater samples. Details regarding any identified non-conformances can be found in the appended laboratory analytical documentation.

It is Coneco's opinion that the presented laboratory data are compliant with the applicable MCP Analytical Method standards and laboratory QC requirements. As such, these data are considered to be usable without adjustment for Site Characterization decisions made pursuant to 310 CMR 40.0000.

Groundwater Reporting Category

In accordance with 310 CMR 40.0362, groundwater at the Site is classified as either RCGW-1 or RCGW-2 based on the criteria presented in Table 3. The groundwater classification evaluation for the Site is based upon a MassDEP Phase I Site Assessment Map,

included for reference as Figure 3, information available from the Town of Rockland Board of Health and the MassDEP well search program.

Table 3 - RCGW-1 Reporting Categories for Groundwater									
RCGW-1 Criteria	RCGW-1 Classification								
Within the Zone II for a public water supply and/or Town Water Protection District?	No								
2) Within an Interim Wellhead Protection Area	No								
3) Within a Potentially Productive Aquifer	Yes								
4) Within the Zone A of a Class A surface water body used as a public water supply	Yes								
5) At any point located 500 or more feet from a public water supply distribution pipeline unless the groundwater is located under a parcel of land where any portion of that parcel is less than 500 feet from a public water supply distribution pipeline.	No								
6) Within a Municipal Aquifer Protection District	No								
7) At any groundwater sampling point located within 500 feet of a private water supply well	No								
Note: Reporting Category for groundwater based on 310 CMR 40.0362.									

Portions of the Site, including the locations of the groundwater monitoring wells are located within a medium-yield potentially productive aquifer. Portions of the Site, not including the locations of the monitoring wells, are also located within the boundaries of a Zone A Public Water Supply Protection Area. As such, groundwater at the Site is subject to the RCGW-1 classification.

Findings and Conclusions

No visual or olfactory evidence of a release of OHM to subsurface soil was observed in the fifteen test pits advanced throughout the Site in October 2019. As concentrations of analyzed compounds in the groundwater samples collected from the on-Site monitoring wells in 2019 and 2021 do not exceed the applicable RCGW-1 Reportable Concentrations (RCs), there is currently no indication that a significant release of oil and/or hazardous materials to groundwater has occurred at the Site. As such, it is the opinion of Coneco that, based on observation of soil conditions and the groundwater analytical data collected for the Site and summarized herein, no reportable release condition exists at the Site and no further action is required or recommended at this time with regard to the environmental conditions at the Site.

If you have any questions concerning this submittal, please feel free to contact the undersigned.

Respectfully Submitted,

Coneco Engineers & Scientists, Incorporated

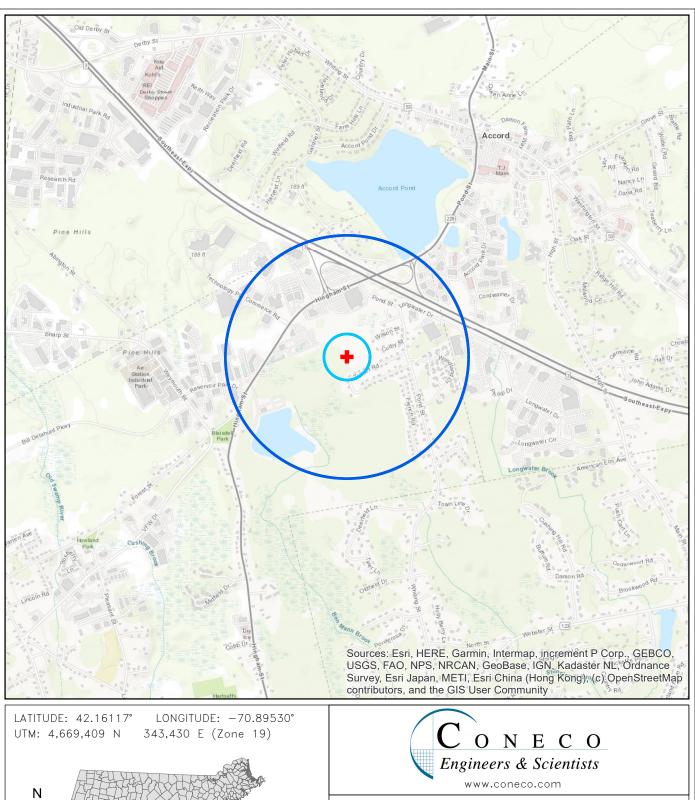
Deirdre C. Kearney

Environmental Scientist

Brian F. Klingler, PG, LSP Principal Geologist

DCK:MEB:BFK;jw

X:\\3395.1.003_Groundwater Sampling Summary.docx


ATTACHMENTS:

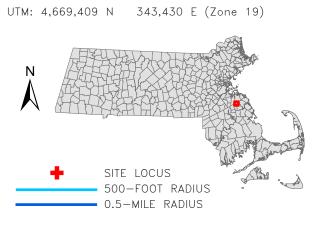

Figure 1 - Site Locus Figure 2 - Aerial Image

Figure 3 - MassDEP Phase I Site Assessment Map

Photographs

Groundwater Sampling Field Sheets Laboratory Analytical Documentation

SITE LOCUS MAP SHINGLEMILL APARTMENTS 75-79 POND STREET ROCKLAND, MASSACHUSETTS

SCALE	PROJECT NO.	DRAWING NUMBER
1:25000	3395.1.003	FIGURE 1

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

75-79 POND STREET ROCKLAND, MA


NAD83 UTM Meters: 4669403mN , 343430mE (Zone: 19) January 20, 2022

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information.

FIGURE 3

Photo 1View of MW-01/WELL-1 as viewed from the east (location of steel well casing indicated by red arrow).

Photo 2 View of WELL-2 as viewed from the north (stick-up well location indicated by red arrow).

Photo 3View of WELL-3 as viewed from the northeast (location of steel well casing indicated by red arrow).

			Photographs
	ONE C Engineers & Scient HROUGHOUT NEW ENGLAND	ntists	SHINGLEMILL APARTMENTS 75-79 POND STREET ROCKLAND, MASSACHUSETTS
PHOTOGRAPHER DATE CHECKED			ROCKEARD, WASSACHUSETTS
DCK	7/15/2021	MEB	Coneco Project No. 3395.1.003

CONECO ENGINEERS & SCIENTISTS					GROUNDWATER SAMPLING RECORD			
PROJECT: 3395.1					WELL ID:	MW-01		
LOCATION:	75-79 P	ond Stree	et, Rockland, Ma	assachusetts	DATE:	4/4/2019		
SAMPLED BY:	Deirdre	Kearney	Ť		TIME:	0900		
Protective casing secure Concrete collar intact PVC stick-up intact Well cap present	NA YES		FROM GROUN RISER STICK- FROM GROUN WELL DIAME	UP ND (ft) NA TER	in a 5-gallon bucket a	NA NA NO NTAKE: HEIGHT: ER IN WELL: ER PURGED: WATER MAN nd poured adja	feet	Pen mark North Volume cale:
				FIELD WATER QUALI	TY MEASUREME	NTS		
Time		09	55					
Volume Purged (gallons)		5.	.0					
Temperature (°C)								
Conductivity (µmhos/cm)								
pH (Std. units)								
Flow (ml/min)								
Depth to water (ft)								
SAMPLER TYPE				DESCRIPTION OF S	SAMPLING FOLUM	MENT (MOT	DEL AND S/N)	
Bailer Peristaltic Pump Submersible Pump Bladder pump Other:	Purge	Sample		Geopump Peristaltic		VENT (MOE		
Analytical Parameter		Filtered	(Y/N)	Preservation	Volume/Containers	3	Time Collected	Date Collected
VOCs		N		HCl	(3) 40-mL VOAs		1000	4/4/2019
Dissolved Metals		Y		HNO ₃	(1) 250-mL Poly		1000	4/4/2019
Total Metals		N		HNO ₃	(1) 250-mL Poly		1000	4/4/2019
Nitrate and Nitrite		N		Ice	(1) 1-L Poly		1000	4/4/2019
Radionuclides		N		HNO ₃	(1) 1-L Poly		1000	4/4/2019
Coliform Bacteria		N		Ice	(1) Sterile Cup		1000	4/4/2019
pH and Conductivity		N N		Ice	(1) 1-L Poly		1000	4/4/2019
Hardness		N		HC1	(1) 250-mL Poly		1000	4/4/2019

CONE	CONECO ENGINEERS & SCIENTISTS					GR	OUNDW	ATER SAMPLING R	ECORD
PROJECT:	3395.1					WELL ID:	WELL-1		
LOCATION:	75-79 P	ond Stree	et, Rockland, Ma	ssachuset	ts	DATE:	7/15/2021		
SAMPLED BY:	Deirdre	Kearney	r			TIME:	1115		
Protective casing secure Concrete collar intact PVC stick-up intact Well cap present	NA YES	NO C	PROTECTIVE FROM GROUN RISER STICK- FROM GROUN WELL DIAME	UP ND (ft) TER	STICK-UP 1.55 NA 1 inch 1.5 inch 2 inch 4 inch	in a 5-gallon bucket a	Not Measure 3.21 NA NA No leep to be mea STAKE: HEIGHT: ER PURGED: WATER MAN nd poured adja	feet fe	Description
						Note: Volume = pi x	([radius in fee	t] ²) x (height in feet) x (7.48 gallo	ns / 1 cubic foot)
				FIEI	D WATER QUALI	TY MEASUREME	NTS		
				. 11.71		- 1.12. ISONEME			
		12	00						
Time									
		5.	.0						
Volume Purged (gallons)									
		18	31						
Temperature (°C)									
		1,1	28						
Conductivity (µmhos/cm)		,							
		81	14						
pH (Std. units)									
Flow (ml/min)									
Depth to water (ft)									
SAMPLER TYPE					DESCRIPTION OF S	SAMPLING EQUIPN	MENT (MOD	DEL AND S/N)	
Bailer Peristaltic Pump Submersible Pump Bladder pump Other:	Purge	Sample I		•	Solinist Oil/Water Inc Oakton [®] Multi-Paran Geopump Peristaltic	neter Meter			
Amplytical Development		Eil+ 1	(V/NI)	Duog '	iam	Volume/Ct		Time Collected	Data Callagt- J
Analytical Parameter PFAS		Filtered N	(1 /N)	Preservat Ice	ion	Volume/Containers (2) 250-mL Poly		Time Collected 1205	Date Collected 7/15/2021
						() III I III			
						1		1	

CONECO ENGINEERS & SCIENTISTS				GRO	DUNDWATER SAMPLIN	G RECORD
PROJECT:	3395.1			WELL ID:	WELL-2	
LOCATION:	75-79 I	Pond Street, Rockland, M	assachusetts	DATE:	7/15/2021	
SAMPLED BY:	Deirdre	e Kearney		TIME:	1120	
WELL INTEGRITY Protective casing secure Concrete collar intact PVC stick-up intact Well cap present Security lock present PID SCREENING (ppmV) Background Well mouth	NA YES O (if required NA NA	S NO FROM GROU I	-UP ND (ft) 2.20 ETER	NAPL THICKNESS: Confirmed w/ bailer? Notes: DEPTH OF PUMP IN WATER COLUMN H VOLUME OF WATE! VOLUME OF WATE! DESCRIBE PURGE V in a 5-gallon bucket an	NA feet NA feet No feet TAKE: 9.5 feet EIGHT: 10.89 feet R IN WELL: 1.742 gallons	ling gal/ft (in)
			FIELD WATER QUALI	TV MEASUREMEN	NTS	
Time		1315	TIED WITERQUID			
Volume Purged (gallons)						
Temperature (°C)		20.8				
Conductivity (µmhos/cm)		163				
pH (Std. units)		5.71				
Flow (ml/min)						
Depth to water (ft)						
SAMPLER TYPE Bailer Peristaltic Pump Submersible Pump Bladder pump Other:	Purge	Sample	DESCRIPTION OF S Solinist Oil/Water In Oakton® Multi-Paran Geopump Peristaltic	dicator neter Meter	MENT (MODEL AND S/N)	
Analytical Parameter		Filtered (Y/N)	Preservation	Volume/Containers	Time Collected	Date Collected
PFAS		N	Ice	(2) 250-mL Poly	1320	7/15/2021

CONECO ENGINEERS & SCIENTISTS					GROUNDWATER SAMPLING RECORD					
PROJECT:	3395.1					WELL ID:	WELL-3			
LOCATION:	75-79 Po	ond Stree	et, Rockland, Ma	assachusetts		DATE:	7/15/2021			<u> </u>
SAMPLED BY:	Deirdre	Kearney				TIME:	1330			_
WELL INTEGRITY Protective casing secure Concrete collar intact PVC stick-up intact Well cap present Security lock present PID SCREENING (ppmV Background Well mouth	NA YES NA YES NA YES NA NA	NO	FROM GROUN RISER STICK- FROM GROUN WELL DIAME	UP ND (ft) NA TER		in a 5-gallon bucket a	Not Measure 2.03 NA NA NO leep to be mea NTAKE: HEIGHT: ER IN WELL: ER PURGED: WATER MAN nd poured adja	feet feet feet sured 10 feet Not measured Not measured	npling gal/ft	11 in) 1.5 in) in) in) in) 6 in)
Time		142	20	FIELD WATER	QUALI	FY MEASUREME	NTS			
Volume Purged (gallons)		5.	0							
Temperature (°C)		22	.4							
Conductivity (µmhos/cm)		22	2							
pH (Std. units)		9.9	93							
Flow (ml/min)										
Depth to water (ft)										
SAMPLER TYPE				DESCRIPTION	ON OF S	AMPLING EQUIPN	MENT (MOT	OFL AND S/N)		
Bailer Peristaltic Pump Submersible Pump Bladder pump Other:	Purge	Sample I		Solinist Oil/\(\sigma\) Oakton \(\begin{array}{c}\text{Mu}\) Geopump Pe	Water Inc lti-Param	licator neter Meter	VIENT (WOL	TEL AND SIN)		- - - -
Analytical Parameter		Filtered	(Y/N)	Preservation		Volume/Containers		Time Collected	Date Collect	ed
PFAS		N		Ice		(2) 250-mL Poly		1425	7/15/2021	

April 9, 2019

Marc Brochu Coneco Engineers & Scientists, Inc. 4 First Street Bridgewater, MA 02324

Project Location: Pond St., Rockland, MA

Client Job Number: Project Number: 3395.1

Laboratory Work Order Number: 19D0221

Enclosed are results of analyses for samples received by the laboratory on April 4, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

DRAFT REPORT Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
19D0221-01	7
19D0221-02	12
Sample Preparation Information	13
QC Data	15
Volatile Organic Compounds by GC/MS	15
B227555	15
Metals Analyses (Total)	20
B227554	20
B227559	20
Metals Analyses (Dissolved)	21
B227576	21
B227578	21
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	22
B227473	22
B227484	22
B227523	22
B227584	22
Flag/Qualifier Summary	23
Certifications	24
Chain of Custody/Sample Receipt	27

Coneco Engineers & Scientists, Inc.

4 First Street Bridgewater, MA 02324 ATTN: Marc Brochu REPORT DATE: 4/9/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 3395.1

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19D0221

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Pond St., Rockland, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-01	19D0221-01	Ground Water		7500 RaB	CT PH-0694/NY10888/MA M-PA1457
				DOE 1990 U-02	CT PH-0694/NY10888/MA M-PA1457
				EPA 300.0	
				EPA 900.0	CT PH-0694/NY10888/MA M-PA1457
				EPA 904.0	CT PH-0694/NY10888/MA M-PA1457
				SM21-22 2510B	
				SM21-22 4500 H B	
				SW-846 6010	
				SW-846 6010D	
				SW-846 6020B	
				SW-846 8260C	
MW-01	19D0221-02	Ground Water		SM 9223B - COLILERT	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SM21-22 4500 H B

Qualifications:

H-05

Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was

exceeded.
Analyte & Samples(s) Qualified:

19D0221-01[MW-01]

SW-846 8260C

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

Diethyl Ether

B227555-BS1, B227555-BSD1

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

2,2-Dichloropropane

19D0221-01[MW-01], B227555-BLK1, B227555-BS1, B227555-BSD1

L-06

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the high side. Analyte & Samples(s) Qualified:

Vinyl Chloride

B227555-BS1, B227555-BSD1

RL-07

Elevated reporting limit based on lowest point in calibration.

MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

19D0221-01[MW-01]

1,2,4-Trichlorobenzene

19D0221-01[MW-01]

1,2-Dibromo-3-chloropropane (DB)

19D0221-01[MW-01]

Carbon Disulfide

19D0221-01[MW-01]

Methylene Chloride

19D0221-01[MW-01]

Naphthalene

19D0221-01[MW-01]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1,2-Dibromo-3-chloropropane (DB)

19D0221-01[MW-01], B227555-BLK1, B227555-BS1, B227555-BSD1, S034410-CCV1

19D0221-01[MW-01], B227555-BLK1, B227555-BS1, B227555-BSD1, S034410-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Vinyl Chloride

B227555-BS1, B227555-BSD1, S034410-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result. Analyte & Samples(s) Qualified:

1,4-Dioxane

19D0221-01[MW-01], B227555-BLK1, B227555-BS1, B227555-BSD1, S034410-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Bromomethane

B227555-BS1, B227555-BSD1, S034410-CCV1

Diethyl Ether

B227555-BS1, B227555-BSD1, S034410-CCV1

Styrene

B227555-BS1, B227555-BSD1, S034410-CCV1

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Location: Pond St., Rockland, MA Sample Description: Work Order: 19D0221

Date Received: 4/4/2019
Field Sample #: MW-01

Sampled: 4/4/2019 10:00

Sample ID: 19D0221-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	26	10	μg/L	1	•	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
tert-Amyl Methyl Ether (TAME)	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Bromodichloromethane	1.1	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Bromoform	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
2-Butanone (MEK)	ND	10	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Carbon Tetrachloride	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Chlorodibromomethane	0.60	0.50	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Chloroform	7.3	2.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Chloromethane	3.6	2.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1	RL-07, V-05	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,3-Dichloropropane	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
2,2-Dichloropropane	ND	1.0	$\mu g/L$	1	L-04, V-05	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
cis-1,3-Dichloropropene	ND	0.40	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Ethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH

Page 7 of 32

Project Location: Pond St., Rockland, MA Sample Description: Work Order: 19D0221

Date Received: 4/4/2019
Field Sample #: MW-01

Sampled: 4/4/2019 10:00

100

70-130

Sample ID: 19D0221-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

			mune organic com	pourius by G	C/1/20				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	•	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/5/19	4/6/19 9:16	EEH
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		87.9	70-130					4/6/19 9:16	
Toluene-d8		80.1	70-130					4/6/19 9:16	

4/6/19 9:16

Project Location: Pond St., Rockland, MA Sample Description: Work Order: 19D0221

Date Received: 4/4/2019
Field Sample #: MW-01

Sampled: 4/4/2019 10:00

Sample ID: 19D0221-01
Sample Matrix: Ground Water

Metals Analyses (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic	ND	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:19	QNW
Iron	17	0.050	mg/L	1		SW-846 6010D	4/5/19	4/8/19 14:55	MJH
Manganese	160	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 14:19	QNW
Hardness	220		mg/L	10		SW-846 6010	4/5/19	4/9/19 8:17	QNW

Project Location: Pond St., Rockland, MA Sample Description: Work Order: 19D0221

Date Received: 4/4/2019

Field Sample #: MW-01 Sampled: 4/4/2019 10:00

Sample ID: 19D0221-01
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		1.1	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 11:14	QNW
Iron		1.8	0.050	mg/L	1		SW-846 6010D	4/5/19	4/8/19 12:43	EJB
Manganese		25	1.0	μg/L	1		SW-846 6020B	4/5/19	4/8/19 11:14	QNW

Project Location: Pond St., Rockland, MA Sample Description: Work Order: 19D0221

Date Received: 4/4/2019

Field Sample #: MW-01 Sampled: 4/4/2019 10:00

Sample ID: 19D0221-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Nitrate as N	0.68	0.10	mg/L	1		EPA 300.0	4/5/19	4/5/19 3:40	IS
Nitrite as N	ND	0.100	mg/L	1		EPA 300.0	4/5/19	4/5/19 3:40	IS
рН @20.8°С	6.7		pH Units	1	H-05	SM21-22 4500 H B	4/5/19	4/5/19 20:00	SLB
Specific conductance	2800	2.0	umhos/cm	1		SM21-22 2510B	4/5/19	4/5/19 15:25	KMV

Project Location: Pond St., Rockland, MA Sample Description: Work Order: 19D0221

Date Received: 4/4/2019

Field Sample #: MW-01 Sampled: 4/4/2019 10:00

Sample ID: 19D0221-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Coliform, Total	ND	1.0	1	MPN/100 mL	1		SM 9223B - COLILERT	4/4/19	4/4/19 14:30	DJM
E. Coli	ND	1.0	1	MPN/100 mL	1		SM 9223B - COLILERT	4/4/19	4/4/19 14:30	DJM

Sample Extraction Data

Prep Method:	EPA	300.0	-EPA	300.0
--------------	-----	-------	------	-------

19D0221-01 [MW-01]

Prep Method: EPA 300.0-EPA 300.0					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0221-01 [MW-01]	B227484	10.0	10.0	04/05/19	
CMAMAN, COLINERT					
SM 9223B - COLILERT					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0221-02 [MW-01]	B227473	100	100	04/04/19	
SM21-22 2510B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
19D0221-01 [MW-01]	B227523	100		04/05/19	
SM21-22 4500 H B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
19D0221-01 [MW-01]	B227584	50.0		04/05/19	
1750221-01 [MW-01]	B22/304	30.0		04/03/17	
Prep Method: SW-846 3005A-SW-846 6010					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
19D0221-01 [MW-01]	B227559	50.0		04/05/19	
Prep Method: SW-846 3005A-SW-846 6010D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0221-01 [MW-01]	B227559	50.0	50.0	04/05/19	
Down Made J. CW 94/ 2007 A Directoral CW 94/ (010D					
Prep Method: SW-846 3005A Dissolved-SW-846 6010D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0221-01 [MW-01]	B227578	5.00	5.00	04/05/19	
Prep Method: SW-846 3005A-SW-846 6020B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0221-01 [MW-01]	B227554	50.0	50.0	04/05/19	
Prep Method: SW-846 3005A Dissolved-SW-846 6020B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
" · · · · · · · · · · · · · · · · · · ·		[]	[]	****	

10.0

04/05/19

B227576

10.0

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0221-01 [MW-01]	B227555	5	5.00	04/05/19

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227555 - SW-846 5030B										
Blank (B227555-BLK1)				Prepared: 04	1/05/19 Anal	yzed: 04/06/1	9			
Acetone	ND	10	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	1.0	$\mu g/L$							
Bromoform	ND	1.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
2-Butanone (MEK)	ND	10	$\mu g/L$							
n-Butylbenzene	ND	1.0	$\mu g/L$							
sec-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
Carbon Disulfide	ND	5.0	$\mu g/L$							
Carbon Tetrachloride	ND	1.0	$\mu g/L$							
Chlorobenzene	ND	1.0	$\mu g/L$							
Chlorodibromomethane	ND	0.50	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	$\mu g/L$							
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	$\mu g/L$							V-05
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							L-04, V-05
1,1-Dichloropropene	ND	0.50	μg/L							,
cis-1,3-Dichloropropene	ND	0.40	μg/L							
trans-1,3-Dichloropropene	ND	0.40	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
1,4-Dioxane	ND	50	μg/L							V-16
Ethylbenzene	ND	1.0	μg/L μg/L							
Hexachlorobutadiene	ND ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L μg/L							
Isopropylbenzene (Cumene)	ND ND	1.0	μg/L μg/L							
p-Isopropyltoluene (p-Cymene)	ND ND	1.0	μg/L μg/L							
Methyl tert-Butyl Ether (MTBE)	ND ND	1.0	μg/L μg/L							
Methylene Chloride		5.0	μg/L μg/L							
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L μg/L							
Naphthalene	ND ND	2.0	μg/L μg/L							

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227555 - SW-846 5030B										
Blank (B227555-BLK1)				Prepared: 04	/05/19 Analy	/zed: 04/06/	19			
n-Propylbenzene	ND	1.0	μg/L							
Styrene	ND	1.0	$\mu \text{g/L}$							
,1,1,2-Tetrachloroethane	ND	1.0	$\mu \text{g/L}$							
,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
Tetrachloroethylene	ND	1.0	$\mu g/L$							
Tetrahydrofuran	ND	2.0	$\mu g/L$							
Toluene	ND	1.0	μg/L							
,2,3-Trichlorobenzene	ND	2.0	μg/L							
,2,4-Trichlorobenzene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	1.0	μg/L							
,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
,2,3-Trichloropropane	ND	2.0	μg/L							
,2,4-Trimethylbenzene	ND	1.0	μg/L							
,3,5-Trimethylbenzene	ND	1.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L μg/I							
-Xylene	ND	1.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	22.7		μg/L	25.0		90.8	70-130			
urrogate: Toluene-d8	25.1		μg/L	25.0		101	70-130			
turrogate: 4-Bromofluorobenzene	25.4		μg/L	25.0		102	70-130			
LCS (B227555-BS1)				Prepared: 04	/05/19 Analy	yzed: 04/06/	19			
Acetone	94.8	10	$\mu g/L$	100		94.8	40-160			
ert-Amyl Methyl Ether (TAME)	10.1	0.50	$\mu g/L$	10.0		101	70-130			
Benzene	9.72	1.0	$\mu g/L$	10.0		97.2	70-130			
Bromobenzene	11.2	1.0	μg/L	10.0		112	70-130			
Bromochloromethane	10.2	1.0	μg/L	10.0		102	70-130			
Bromodichloromethane	10.7	1.0	μg/L	10.0		107	70-130			
Bromoform	10.4	1.0	μg/L	10.0		104	70-130			
Bromomethane	7.50	2.0	μg/L	10.0		75.0	40-160			V-20
2-Butanone (MEK)	73.8	10	μg/L	100		73.8	40-160			
-Butylbenzene	11.1	1.0	μg/L	10.0		111	70-130			
ec-Butylbenzene	11.2	1.0	μg/L	10.0		112	70-130			
ert-Butylbenzene	11.2	1.0	μg/L	10.0		112	70-130			
ert-Butyl Ethyl Ether (TBEE)	10.4	0.50	μg/L	10.0		104	70-130			
Carbon Disulfide Carbon Tetrachloride	12.0	5.0	μg/L	10.0		120	70-130			
Carbon Tetrachioride Chlorobenzene	9.63	1.0	μg/L μg/I	10.0		96.3	70-130			
Chlorodibromomethane	11.5	1.0 0.50	μg/L μg/I	10.0 10.0		115	70-130 70-130			
Chloroethane	11.2	2.0	μg/L μg/L	10.0		112 112	70-130			
Chloroform	11.2	2.0	μg/L μg/L	10.0		97.9	70-130			
Chloromethane	9.79 7.63	2.0	μg/L μg/L	10.0		76.3	40-160			
-Chlorotoluene	10.8	1.0	μg/L μg/L	10.0		108	70-130			
-Chlorotoluene	11.7	1.0	μg/L μg/L	10.0		117	70-130			
,2-Dibromo-3-chloropropane (DBCP)	7.95	2.0	μg/L μg/L	10.0		79.5	70-130			V-05
,2-Dibromoethane (EDB)	10.8	0.50	μg/L	10.0		108	70-130			, 03
Dibromomethane	10.6	1.0	μg/L	10.0		106	70-130			
,2-Dichlorobenzene	11.3	1.0	μg/L	10.0		113	70-130			
,3-Dichlorobenzene	11.6	1.0	μg/L	10.0		116	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227555 - SW-846 5030B										
LCS (B227555-BS1)				Prepared: 04	1/05/19 Analy	zed: 04/06/1	9			
Dichlorodifluoromethane (Freon 12)	6.85	2.0	μg/L	10.0		68.5	40-160			L-14
1,1-Dichloroethane	10.3	1.0	μg/L	10.0		103	70-130			
,2-Dichloroethane	9.11	1.0	μg/L	10.0		91.1	70-130			
,1-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130			
is-1,2-Dichloroethylene	10.0	1.0	μg/L	10.0		100	70-130			
rans-1,2-Dichloroethylene	10.8	1.0	μg/L	10.0		108	70-130			
,2-Dichloropropane	9.94	1.0	μg/L	10.0		99.4	70-130			
,3-Dichloropropane	10.5	0.50	μg/L	10.0		105	70-130			
,2-Dichloropropane	6.91	1.0	μg/L	10.0		69.1 *	70-130			L-04, V-05
,1-Dichloropropene	9.56	0.50	μg/L	10.0		95.6	70-130			,
is-1,3-Dichloropropene	10.7	0.40	μg/L	10.0		107	70-130			
rans-1,3-Dichloropropene	11.1	0.40	μg/L	10.0		111	70-130			
Diethyl Ether	13.5	2.0	μg/L	10.0		135 *	70-130			L-02, V-20
Diisopropyl Ether (DIPE)	10.1	0.50	μg/L	10.0		101	70-130			, . 20
,4-Dioxane	95.2	50	μg/L	100		95.2	40-160			V-16
thylbenzene	11.0	1.0	μg/L	10.0		110	70-130			
exachlorobutadiene	11.6	0.60	μg/L	10.0		116	70-130			
-Hexanone (MBK)	83.9	10	μg/L	100		83.9	40-160			
opropylbenzene (Cumene)	11.4	1.0	μg/L μg/L	10.0		114	70-130			
-Isopropyltoluene (p-Cymene)	11.4	1.0	μg/L μg/L	10.0		112	70-130			
lethyl tert-Butyl Ether (MTBE)	10.9	1.0	μg/L μg/L	10.0		109	70-130			
lethylene Chloride	12.3	5.0	μg/L μg/L	10.0		123	70-130			
-Methyl-2-pentanone (MIBK)	88.5	10	μg/L	100		88.5	40-160			
(aphthalene	9.05	2.0	μg/L	10.0		90.5	70-130			
-Propylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
tyrene	12.5	1.0	μg/L	10.0		125	70-130			V-20
,1,1,2-Tetrachloroethane	11.6	1.0	μg/L	10.0		116	70-130			¥-20
1,2,2-Tetrachloroethane	10.7	0.50	μg/L	10.0		107	70-130			
etrachloroethylene	10.7	1.0	μg/L μg/L	10.0		106	70-130			
etrahydrofuran	9.37	2.0	μg/L	10.0		93.7	70-130			
oluene	10.6	1.0	μg/L	10.0		106	70-130			
,2,3-Trichlorobenzene	10.0	2.0	μg/L	10.0		102	70-130			
2,4-Trichlorobenzene	9.91	1.0	μg/L	10.0		99.1	70-130			
,1,1-Trichloroethane	9.71	1.0	μg/L	10.0		97.1	70-130			
,1,2-Trichloroethane	11.1	1.0	μg/L	10.0		111	70-130			
richloroethylene	10.7	1.0	μg/L	10.0		107	70-130			
richlorofluoromethane (Freon 11)	9.70	2.0	μg/L	10.0		97.0	70-130			
,2,3-Trichloropropane	9.89	2.0	μg/L	10.0		98.9	70-130			
2,4-Trimethylbenzene	10.9	1.0	μg/L	10.0		109	70-130			
,3,5-Trimethylbenzene	11.4	1.0	μg/L	10.0		114	70-130			
'inyl Chloride	16.2	2.0	μg/L	10.0		162 *	70-130			L-06, V-06
n+p Xylene	22.4	2.0	μg/L	20.0		112	70-130			, . 00
-Xylene	11.5	1.0	μg/L	10.0		115	70-130			
urrogate: 1,2-Dichloroethane-d4	23.0		μg/L	25.0		91.9	70-130			
urrogate: Toluene-d8	24.7		μg/L	25.0		98.7	70-130			
urrogate: 4-Bromofluorobenzene	26.2		μg/L	25.0		105	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227555 - SW-846 5030B										
LCS Dup (B227555-BSD1)				Prepared: 04	/05/19 Analy	yzed: 04/06/	19			
Acetone	94.3	10	μg/L	100		94.3	40-160	0.529	20	
tert-Amyl Methyl Ether (TAME)	9.72	0.50	$\mu g/L$	10.0		97.2	70-130	3.83	20	
Benzene	9.79	1.0	$\mu g/L$	10.0		97.9	70-130	0.718	20	
Bromobenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	1.41	20	
Bromochloromethane	10.3	1.0	$\mu g/L$	10.0		103	70-130	1.37	20	
Bromodichloromethane	10.6	1.0	$\mu g/L$	10.0		106	70-130	0.749	20	
Bromoform	11.0	1.0	$\mu g/L$	10.0		110	70-130	5.24	20	
Bromomethane	8.51	2.0	$\mu g/L$	10.0		85.1	40-160	12.6	20	V-20
2-Butanone (MEK)	73.2	10	$\mu g/L$	100		73.2	40-160	0.721	20	
n-Butylbenzene	11.0	1.0	$\mu g/L$	10.0		110	70-130	1.45	20	
sec-Butylbenzene	11.3	1.0	$\mu g/L$	10.0		113	70-130	0.798	20	
tert-Butylbenzene	11.2	1.0	$\mu g/L$	10.0		112	70-130	0.447	20	
tert-Butyl Ethyl Ether (TBEE)	10.4	0.50	μg/L	10.0		104	70-130	0.672	20	
Carbon Disulfide	12.0	5.0	μg/L	10.0		120	70-130	0.334	20	
Carbon Tetrachloride	9.65	1.0	μg/L	10.0		96.5	70-130	0.207	20	
Chlorobenzene	11.9	1.0	μg/L	10.0		119	70-130	3.25	20	
Chlorodibromomethane	11.5	0.50	μg/L	10.0		115	70-130	2.20	20	
Chloroethane	11.5	2.0	μg/L	10.0		115	70-130	2.73	20	
Chloroform	9.70	2.0	μg/L	10.0		97.0	70-130	0.924	20	
Chloromethane	7.75	2.0	μg/L	10.0		77.5	40-160	1.56	20	
2-Chlorotoluene	11.0	1.0	μg/L	10.0		110	70-130	1.38	20	
4-Chlorotoluene	11.8	1.0	μg/L	10.0		118	70-130	1.19	20	
1,2-Dibromo-3-chloropropane (DBCP)	7.25	2.0	μg/L	10.0		72.5	70-130	9.21	20	V-05
1,2-Dibromoethane (EDB)	11.2	0.50	μg/L μg/L	10.0		112	70-130	3.82	20	V-03
Dibromomethane	10.9	1.0	μg/L μg/L	10.0		109	70-130	2.60	20	
1,2-Dichlorobenzene		1.0	μg/L μg/L	10.0		117	70-130	3.30	20	
1,3-Dichlorobenzene	11.7	1.0	μg/L μg/L	10.0						
1,4-Dichlorobenzene	11.7	1.0		10.0		117 112	70-130 70-130	0.775 0.448	20 20	
Dichlorodifluoromethane (Freon 12)	11.2	2.0	μg/L							T 14
1,1-Dichloroethane	6.74	1.0	μg/L	10.0		67.4	40-160	1.62	20	L-14
1,1-Dichloroethane	10.2		μg/L	10.0		102	70-130	0.978	20	
	9.17	1.0	μg/L	10.0		91.7	70-130	0.656	20	
1,1-Dichloroethylene	11.5	1.0	μg/L	10.0		115	70-130	2.33	20	
cis-1,2-Dichloroethylene	10.1	1.0	μg/L	10.0		101	70-130	1.09	20	
trans-1,2-Dichloroethylene	10.5	1.0	μg/L	10.0		105	70-130	2.53	20	
1,2-Dichloropropane	9.75	1.0	μg/L	10.0		97.5	70-130	1.93	20	
1,3-Dichloropropane	10.5	0.50	μg/L	10.0		105	70-130	0.381	20	
2,2-Dichloropropane	6.75	1.0	μg/L	10.0		67.5 *	70-130	2.34	20	L-04, V-05
1,1-Dichloropropene	9.51	0.50	μg/L	10.0		95.1	70-130	0.524	20	
cis-1,3-Dichloropropene	10.9	0.40	μg/L	10.0		109	70-130	2.22	20	
trans-1,3-Dichloropropene	11.2	0.40	μg/L	10.0		112	70-130	0.719	20	
Diethyl Ether	13.5	2.0	μg/L	10.0		135 *	70-130	0.518	20	L-02, V-20
Diisopropyl Ether (DIPE)	10.2	0.50	$\mu g/L$	10.0		102	70-130	0.395	20	
1,4-Dioxane	94.3	50	μg/L	100		94.3	40-160	1.02	20	V-16
Ethylbenzene	11.2	1.0	μg/L	10.0		112	70-130	0.991	20	
Hexachlorobutadiene	11.6	0.60	$\mu g/L$	10.0		116	70-130	0.517	20	
2-Hexanone (MBK)	83.6	10	$\mu g/L$	100		83.6	40-160	0.322	20	
Isopropylbenzene (Cumene)	11.4	1.0	$\mu g \! / \! L$	10.0		114	70-130	0.440	20	
p-Isopropyltoluene (p-Cymene)	11.2	1.0	$\mu g/L$	10.0		112	70-130	0.714	20	
Methyl tert-Butyl Ether (MTBE)	10.8	1.0	μg/L	10.0		108	70-130	1.48	20	
Methylene Chloride	12.2	5.0	μg/L	10.0		122	70-130	1.06	20	
4-Methyl-2-pentanone (MIBK)	86.6	10	μg/L	100		86.6	40-160	2.19	20	
Naphthalene	8.75	2.0	μg/L	10.0		87.5	70-130	3.37	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227555 - SW-846 5030B										
LCS Dup (B227555-BSD1)				Prepared: 04	1/05/19 Anal	yzed: 04/06/	19			
n-Propylbenzene	11.4	1.0	μg/L	10.0		114	70-130	0.529	20	
Styrene	12.8	1.0	μg/L	10.0		128	70-130	3.00	20	V-20
1,1,1,2-Tetrachloroethane	12.1	1.0	μg/L	10.0		121	70-130	3.71	20	
1,1,2,2-Tetrachloroethane	10.9	0.50	μg/L	10.0		109	70-130	1.57	20	
Tetrachloroethylene	10.4	1.0	μg/L	10.0		104	70-130	2.19	20	
Tetrahydrofuran	9.14	2.0	μg/L	10.0		91.4	70-130	2.49	20	
Toluene	10.5	1.0	μg/L	10.0		105	70-130	1.42	20	
1,2,3-Trichlorobenzene	10.1	2.0	μg/L	10.0		101	70-130	1.38	20	
1,2,4-Trichlorobenzene	9.75	1.0	μg/L	10.0		97.5	70-130	1.63	20	
1,1,1-Trichloroethane	9.60	1.0	μg/L	10.0		96.0	70-130	1.14	20	
1,1,2-Trichloroethane	11.1	1.0	μg/L	10.0		111	70-130	0.360	20	
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	3.14	20	
Trichlorofluoromethane (Freon 11)	9.75	2.0	μg/L	10.0		97.5	70-130	0.514	20	
1,2,3-Trichloropropane	10.1	2.0	μg/L	10.0		101	70-130	1.80	20	
1,2,4-Trimethylbenzene	11.2	1.0	μg/L	10.0		112	70-130	2.71	20	
1,3,5-Trimethylbenzene	11.4	1.0	μg/L	10.0		114	70-130	0.702	20	
Vinyl Chloride	17.1	2.0	$\mu g/L$	10.0		171 *	70-130	5.41	20	L-06, V-06
m+p Xylene	22.4	2.0	$\mu g/L$	20.0		112	70-130	0.178	20	
o-Xylene	11.8	1.0	$\mu g/L$	10.0		118	70-130	2.15	20	
Surrogate: 1,2-Dichloroethane-d4	22.8		μg/L	25.0		91.0	70-130			
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.6	70-130			
Surrogate: 4-Bromofluorobenzene	26.3		μg/L	25.0		105	70-130			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227554 - SW-846 3005A										
Blank (B227554-BLK1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	.9			
Arsenic	ND	0.40	μg/L							
Manganese	ND	1.0	$\mu g/L$							
LCS (B227554-BS1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	9			
Arsenic	544	4.0	μg/L	500		109	80-120			
Manganese	548	10	$\mu g/L$	500		110	80-120			
LCS Dup (B227554-BSD1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	9			
Arsenic	504	4.0	μg/L	500		101	80-120	7.71	20	
Manganese	501	10	$\mu g/L$	500		100	80-120	8.98	20	
Batch B227559 - SW-846 3005A										
Blank (B227559-BLK1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	9			
Iron	ND	0.050	mg/L							
LCS (B227559-BS1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	9			
Iron	4.09	0.050	mg/L	4.00		102	80-120			
LCS Dup (B227559-BSD1)				Prepared: 04	05/19 Anal	yzed: 04/08/1	9			
Iron	4.03	0.050	mg/L	4.00		101	80-120	1.38	20	

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227576 - SW-846 3005A Dissolved										
Blank (B227576-BLK1)				Prepared: 04	1/05/19 Analy	zed: 04/08/	19			
Arsenic	ND	0.40	μg/L							
Manganese	ND	1.0	$\mu \text{g/L}$							
LCS (B227576-BS1)				Prepared: 04/05/19 Analyzed: 04/08/19						
Arsenic	41.3	0.40	μg/L	40.0		103	80-120			
Manganese	42.6	1.0	$\mu g \! / \! L$	40.0		107	80-120			
Duplicate (B227576-DUP1)	Sou	rce: 19D0221-	01	Prepared: 04	1/05/19 Analy	zed: 04/08/	19			
Arsenic	0.912	0.40	μg/L		1.08			16.8	20	
Manganese	25.3	1.0	$\mu g/L$		25.1			0.896	20	
Matrix Spike (B227576-MS1)	Source: 19D0221-01			Prepared: 04/05/19 Analyzed: 04/08/19						
Arsenic	28.9	0.50	μg/L	25.0	1.08	111	75-125			
Manganese	54.1	1.2	$\mu g/L$	25.0	25.1	116	75-125			
Batch B227578 - SW-846 3005A Dissolved										
Blank (B227578-BLK1)		Prepared: 04/05/19 Analyzed: 04/08/19								
Iron	ND	0.050	mg/L							
LCS (B227578-BS1)				Prepared: 04	1/05/19 Analy	zed: 04/08/	19			
Iron	3.97	0.050	mg/L	4.00		99.2	80-120			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227473 - SM 9223B - COLILERT										
Blank (B227473-BLK1)				Prepared &	Analyzed: 04	1/04/19				
Coliform, Total	ND	1.0	MPN/100 ml							
E. Coli	ND	1.0	MPN/100 ml							
Batch B227484 - EPA 300.0										
Blank (B227484-BLK1)				Prepared &	Analyzed: 04	/04/19				
Nitrate as N	ND	0.10	mg/L							
Nitrite as N	ND	0.100	mg/L							
LCS (B227484-BS1)				Prepared &	Analyzed: 04	/04/19				
Nitrate as N	0.94	0.10	mg/L	1.00		93.5	90-110			
Nitrite as N	1.05	0.100	mg/L	1.00		105	90-110			
LCS Dup (B227484-BSD1)				Prepared &	Analyzed: 04	/04/19				
Nitrate as N	0.94	0.10	mg/L	1.00		94.3	90-110	0.873	20	
Nitrite as N	1.05	0.100	mg/L	1.00		105	90-110	0.0760	20	
Batch B227523 - SM21-22 2510B										
Blank (B227523-BLK1)	Prepared & Analyzed: 04/05/19									
Specific conductance	ND	2.0	μmhos/cm							
LCS (B227523-BS1)				Prepared &	Analyzed: 04	/05/19				
Specific conductance	200		μmhos/cm	192		103	90-110			
Duplicate (B227523-DUP1)	Sou	rce: 19D0221	-01	Prepared &	Analyzed: 04	/05/19				
Specific conductance	2800	2.0	μmhos/cm		2800)		2.46	21	
Batch B227584 - SM21-22 4500 H B										
LCS (B227584-BS1)				Prepared &	Analyzed: 04	/05/19				
рН	5.96		pH Units	6.00		99.4	90-110			
LCS (B227584-BS2)				Prepared: 04/05/19 Analyzed: 04/09/19						
pH	5.91		pH Units	6.00		98.5	90-110			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-05	Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-06	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the high side.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
RL-07	Elevated reporting limit based on lowest point in calibration. MA CAM reporting limit not met.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

1,2-Dibromo-3-chloropropane (DBCP)

1,2-Dibromoethane (EDB)

NY

NY

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

	CERTIFICATIONS
Certified Analyses included in this Report	
Analyte	Certifications
EPA 300.0 in Water	
Nitrate as N	NC,NY,MA,VA,ME,NH,CT,RI
Nitrite as N	NY,NC,NH,VA,ME,CT,RI
SM 9223B - COLILERT in Drinking Water	
Coliform, Total	MA,CT,RI
E. Coli	MA,CT,RI
SM21-22 2510B in Water	,
Specific conductance	CT MA NILI NIV DI NIC ME VA
Specific conductance SM21-22 4500 H B in Water	CT,MA,NH,NY,RI,NC,ME,VA
pН	CT,MA,RI
SW-846 6010 in Water	
Hardness	CT,MA,NH,NY
SW-846 6010D in Water	
Iron	CT,NH,NY,ME,VA,NC
Iron	CT,NH,NY,ME,NC,VA
SW-846 6020B in Water	
Arsenic	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,NC,ME,VA
Manganese	CT,NH,NY,NC,ME,VA
Manganese	CT,NH,NY,ME,VA,NC
SW-846 8260C in Water	
Acetone	CT,NH,NY,ME
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene	NY,ME
sec-Butylbenzene	NY,ME
tert-Butylbenzene	NY,ME
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME
Ethylbenzene	CT,NH,NY,ME
Hexachlorobutadiene	CT,NH,NY,ME
2-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME
Methylene Chloride	CT,NH,NY,ME
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	CT,NH,NY,ME
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

 $The \ CON-TEST\ Environmental\ Laboratory\ operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

2 Preservation Codes X = Sodium Hydroxide DW = Drinking Water B = Sodium Bisulfate 1 Matrix Codes: GW = Ground Water S = Summa Canister WW = Waste Water ³Container Codes: 0 = Other (please 0 = Other (please 0 = Other (please A = Amber Glass S = Sulfuric Acid Non Soxhlet PCB ONLY O Field Filtered ² Preservation Code Field Filtered Soxhlet F = Tedlar Bag N = Nitric Acid O Lab to Filter Lab to Filter M = Methanol 3 Container Code P = Plastic ST = Sterile SL = Sludge SOL = Solid define) # of Containers F = Sodium **Thiosulfate** G = Glass S = Soil V = Viat Peol = 12H = H define) define) A = Air 0 S:S 3 Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Accredited 11.0 Chromatogram East Longmeadow, MA 01028 AIHA-LAP, LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown **ANALYSIS REQUESTED** 39 Spruce Street within the Conc Code column above: **bavials** Doc # 381 Rev 1_03242017 WRTA MA MCP Required MCP Certification Form Required CT RCP Required RCP Certification Form Require MWRA MA State DW Required School MBTA 968 Special Requirements (50000 # # 8 8 http://www.contestlabs.com CHAIN OF CUSTODY RECORD Matrix S Municipality Brownfield 10-Day Email To: MBCUCHU (₩ OISMA 凶 4-Day 3-Day EXCEL EXCEL Grab CLP Like Data Pkg Required: Composite 7 -397 Government Ending Date/Time Due Date: 5 (h/h ormat: ax To # Federal 7.Day -Day 2-Day Other: City Project Entity Beginning Date/Time ころと 51 /n/n るのでもづけ 2 Email: info@contestlabs.com いずがとられて Date/Time: (4.30 De 103 190022 RO(16 1000 1234 921 m Client Sample 10 / Description しょっし Phone: 413-525-2332 Fax: 413-525-6405 3 Jate/Time: Date/Time: 0 ののにつ 「下るナ こう しょうび ť ートしょたかり いうつかいこう ひつぶん いたなナス 3 つとら Project Manager: $\partial \mathcal{M} \mathcal{A} \in \mathcal{C}$ Con-Test Quote Name/Number: きんとう CON-LEST Relinquished by: (signature) られ (signature) 3 ature) ived by: (signature) J Received by: (eignaturi Work Order# Con-Test Project Location: invoice Recipient: Project Number: Relinquished by iquished by Sampled By: Wed-by comments: Address: Phone: Page 27 of 32

1220061

Doc # 381 Rev 1_03242017

http://www.contestlabs.com

CON-test Phone: 413-525-2332	CHAIN OF CL	CHAIN OF CUSTODY RECORD		39 Spruce Street	to to the	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Last Longmeadow, MA 01028		
_	7-Day	10-Day	**************************************		# of Containers	Γ
Coo	bue Date:		1		2 Preceivation Code	T
Address: 4 FINST START BRIGHMAH MA	Experience of the control of the con				3 Containor Codo	T
Phone: 508-697-3191	1-Day 🔀	3-Dav	ANA	ANAI VSIS REDITECTED	container code	
+35+) SOOG STREET	2-Day	4-Dav				
ようながれる		(m) (cc.	3		C Field Filtered	. V.
23 9 5 T	Format: PDF 🕅	EXCEL				· .
Project Manager: MArc ものにょし			2 ص دا من م فر			
Con-Test Quote Name/Number:	CLP Like Data Pkg Required:	equired:			C Field Eitered	
Invoice Recipient:	Email To:		70°C			
Sampled By: ひぐド	Fax To #:		100			,
Con-Test Work Order# Client Sample ID / Description	Beginning Ending Composite	Grab	で で デ		1 Matrix Codes.	T
	ame value	Cope			GW = Ground Water	
10-3C	00:01 6:05	- - - - - - - - - - - - - -	X X X		WW = Waste Water	
					A = Air	
					S = Soil	
					SOL = Solid	
					0 = Other (please	
					define)	
					2 Preservation Codes:	
					Desc. ##	
					M = Methanol	
					N = Nitric Acid	·····
					X = Sodium Hydroxide	
Comments					Thiosulfate	
		Please use the	offowing codes to in	Please tee the following radac to indirate passible commissions.		
			within the Conc Code column above:	nde column above:	duori define)	
		H - High	; M - Medium; L - Lo	H - High; M - Medium; L - Low; C - Clean; U - Unknown	3 Container Codes	
\				THE STATE OF THE S	A = Amber Glass	
79617	T-M9.19	MA MCP Requ	MA MCP Required		G = Glass P = Plastic	
Time:		MCP Certification Form Required	Required 1			
		CT RCP	CT RCP Required	クロって	V = VIal C = Summa Panietor	
Relinquisher () () () () () () () () () () () () ()		RCP Certification Form Required	Required	AMALYTICAL LABORATORY		
7				www.contestlabs.com	0	
200	XIIIX CANANA AND AND AND AND AND AND AND AND AN	MA State DW Required			derine)	
	417.74	PWSID #	Y EN	NELAC and AIMA-LAP, LLC Accredited	id.	
Ogici indianica oy cyfriature) Date/ Ime:	Project Entity Government	Municipality	MWRA WRTA	Other	PCB ONLY	
eceived by: (signature) Date/Time:	Federal	21.5	='		ž] []	·····
	City	Brownfield	MBTA			

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False	
Statement will be brought to the attention of the Client - State True or False	

Client <u>(</u> 6 Received By	neco 1 <u>Pap</u>		Date	ulu	1/10	Time	1235	
How were the san	•		No Cooler		On Ice	-	No Ice	
received?			No Coolei _		Ambient			
	Direct from Sai					2	Melted Ice	
Were samples w	ithin	By Gun #			Actual Tem	<u>p - J.S</u>		<u>.</u>
Temperature? 2-	6°C	By Blank #			Actual Tem			<u>.</u>
	ody Seal Intact?	<u> </u>	Wer	re Samples	s Tampered	with?	M	- -
Was COC	Relinquished?		Does	Chain Agr	ee With Sa	mples?	<u> </u>	•
	oken/leaking/loose ca	ps on any sam		F_				
Is COC in ink/ Leg				·		olding time?	·	•
Did COC include		T	Analysis	T		er Name		<u>.</u>
pertinent Informati		<u> </u>	ID's _		Collection	Dates/Time	es	
•	s filled out and legible	? <u>T</u>	i					
Are there Lab to F		F	:		notified?			•,
Are there Rushes?		T			notified?	Katie, 1	Emily Duyn,	Laver
Are there Short Ho				Who was	notified?	KAH	c '	<u>.</u>
Is there enough Vo		7			P			
-	e where applicable?	F		MS/MSD?_		.	-	
Proper Media/Con		T			samples rec	quired?	+	•
Were trip blanks re		<u> </u>		On COC?	<u> L</u>	_		
Do all samples ha	ve the proper pH?		Acid _	phis	•	Base	***************************************	
Vials #		#			#			#
Unp-	1 Liter Amb.		1 Liter F				oz Amb.	
HCL- 3	500 mL Amb.		500 mL l		<u> </u>		mb/Clear	
Meoh-	250 mL Amb.		250 mL l				mb/Clear	
Bisulfate-	Flashpoint		Col./Ba				mb/Clear	
DI-	Other Glass		Other P				ncore	
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plastic			Frozen:		
Sulfunc-	reichiolate		Ziplo					
			Unused M	ledia				
Vials t		#	417	,	#	40	A 1	#
Unp-	1 Liter Amb.		1 Liter F				oz Amb.	
		. I	500 mL l				mb/Clear	
HCL-	500 mL Amb.	······································		Plastic		40Z A	mb/Clear	
HCL- Meoh-	250 mL Amb.		250 mL l	:		207 1	h/Class	
HCL- Meoh- Bisulfate-	250 mL Amb. Col./Bacteria		Flashp				mb/Clear	
HCL- Meoh- Bisulfate- DI-	250 mL Amb. Col./Bacteria Other Plastic		Flashp Other C	Glass	2-2-10-10-10-10-10-10-10-10-10-10-10-10-10-	E	mb/Clear ncore	
HCL- Meoh- Bisulfate- DI- Thiosulfate-	250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Flashp Other C Plastic	Glass Bag				
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	250 mL Amb. Col./Bacteria Other Plastic		Flashp Other C	Glass Bag		E		
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Comments:	250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate		Flashp Other C Plastic Ziplo	Glass Bag ock		E		
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Comments:	250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Flashp Other C Plastic Ziplo	Glass Bag		E		

100027 (http://www.contestlabs.com Doc # 381 Rev 1_03242017 Page of Phone: 413-525-2332 CHAIN OF CUSTODY RECORD 39 Spruce Street East Longmeadow, MA 01028 Fax: 413-525-6405 Email: info@contestlabs.com -Day 10-Day # of Containers company home CONPIDENCY PROS ESCIENTISTS Due Date: Н Preservation Code street, Bridgewater MA Address: Õ Container Code Phone: 1-Day 3-Day **ANALYSIS REQUESTED** Pond Street 2-Day 4-Day 3 Field Filtered 3 Pond Street, Rockland MA Project Location: O Lab to Filter Project Number: PDF EXCEL ~~ Format くだ 子がもつの 3.00 hU Project Manager: Other: d CT Con-Test Quote Name/Number: CLP Like Data Pkg Required: 0 O Field Filtered DUD! 000 14 Invoice Recipient: 27.10 Cirtory Email To: MBrochu @ (CARO COM O Lab to Filter Sampled By: Fax To #: Con-Test Beginning Ending Matrix Conc Client Sample ID / Description Grab Composite 1 Matrix Codes: Work Order# Date/Time Date/Time Code Code GW = Ground Water 4/4/19 4/4/) MW-01 WW = Waste Water GW ,000 DW = Drinking Water A = AirS = Soil SL = Sludge SOL = Solid 0 = Other (please define) ² Preservation Codes: I = Iced H = HCL M = Methanol N = Nitric Acid S = Sulfuric Acid B = Sodium Bisulfate Lab said it could take 3 X = Sodium Hydroxide T = Sodium days, client was notified. Thiosulfate conform Balteria- Total count 0 = Other (please JLH 4/5/19 s to indicate possible sample concentration define) Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Unknown 3 Container Codes: A = Amber Glass Relinquished by: (signature) Date/Time: (130 Lecturity Motivitation of the property Special Requirements G = Glass Q (6W-X MA MCP Required P = Plastic Received by: (signature ST = Sterile MCP Certification Form Required 4/19 1030

Relinquished by (signature)

ived by (sygnature)

ived by: (signature)

quished by (signature)

Date/Time:

	con-test°
गा।।।	ANALYTICAL LABORATORY www.contestlabs.com

V = Vial S = Summa Canister

T = Tediar Bag

0 = Other (please define) , Bac+i

Soxhlet

Non Soxhlet

Table of Contents PCB ONLY

111 100 1730	SWWANNING COMMISSION OF THE PROPERTY OF THE PR	L MA State DW Redailed		I 80
4/4/11 1235	State	PWSID #	NELAC and AIHA-LAP, LLC Accredited	
Date/Time:	Project Entity		Other	
	Government	Municipality MWRA	☐ WRTA ☐ Chromatogram	
Date/Time:	Federal	21 J School	☐ AIHA-LAP,LLC	

MBTA

MA State DW Required

CT RCP Required

RCP Certification Form Required

Brownfield

City

1220061

Doc # 381 Rev 1_03242017

http://www.contestlabs.com

GW = Ground Water WW = Waste Water DW = Drinking Water Preservation Codes: (= Sodium Hydroxide B = Sodium Bisulfate S = Summa Canister T = Tedlar Bag O = Other (please 3 Container Codes 0 = Other (please 0 = Other (please Page of 2 A = Amber Glass Non Soxhlet PCB ONLY s = Sulfuric Acid Soxhlet ² Preservation Code O Field Filtered Matrix Codes O Field Filtered N = Nitric Acid Lab to Filter O Lab to Filter M = Methanol ST = Sterile V = Vial Container Code A = Air S = Soil SL = Sludge **Thiosulfate** T = Sodium SOL = Solid P = Plastic # of Containers G = Glass define) define) = |ced H= HC 0 Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Accredited CON-LES Chromatogram www.combeatlabs.com AIHA-LAP, LLC 39 Spruce Street East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED within the Conc Code column above: WRTA , W21 ن (را 2 291 MCP Certification Form Required CT RCP Required MA MCP Required RCP Certification Form Required MWRA School MA State DW Required MBTA Special Requirements S Gent CHAIN OF CUSTODY RECORD Matrix Code Z E Municipality Brownfield 10-Day PWSID # 3-Day 4-Day EXCEL Grab CLP Like Data Pkg Required: Composite PDF \mathbb{Z} してのとし Government Ending Date/Time 00:01 **Due Date** Email To: ormat ax To# Federal 7-Day Other: Day Day City Project Entity Beginning Date/Time からったの ようこのたっち Email: info@contestlabs.com 14 19 1030 Date/Time: 4/19 1235 Date/Time: (135 3 Pate/Time 10 W STRUKTOUS Client Sample ID / Description Phone: 413-525-2332 Fax: 413-525-6405 ナるとナ Jate/Time: Date/Time Date/Time 0-35 イマクズミン <u>5</u> かいつら **からこう** Thouts to it 2000 508-697-319 00000 3508 Con-Test Quote Name/Number: Project Manager: MArc CON-test Relinguished by: (signature) efinquished by: (signature) (signature) eceived by: (signature) Project Location: 🗷 Work Order# Con-Test Invoice Recipient: Project Number: Ţ Sampled By: Received by: eceived by Comments Address: Phone: Page 31 of 32

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False	
Statement will be brought to the attention of the Client - State True or False	

Client	Conec					1			
Receiv	ed By	<u>Pap</u>		Date	4/4	19	Time	1235	
How were th	ne samples	In Cooler		No Cooler		On Ice		No Ice	
receiv	/ed?	Direct from Samp	ling			Ambient		Melted Ice	
10/000 0000	منطقت ما	·	By Gun #	~	A	ctual Tem	p- 3.5	_	
Were samp			By Blank #			ctual Tem	*** **** *****************************		
•	Custody Se	ad Intact?	M Blank #	\M\0	ere Samples			^^	
	COC Relin		14.		s Chain Agre	~		_/V+	
		eaking/loose caps	on any cam		S Criairi Agre	e wiiii Sa	inpies :	1	
Is COC in in			On any Sam	•	nples receive	od within h	oldina timo?	-	
Did COC ii	_	Client	-	Analysis	ithies receive		er Name		
pertinent Inf		Project	<u>_</u>	ID's	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	Dates/Times		
•		d out and legible?		100	<u>, </u>	Oonoonon	Dates, rime	<u> </u>	
Are there La		_			Who was	notified?			
Are there Ru					Who was		Katie, E	Mily, Ovyn,	lanco
Are there Sh					Who was		KANL		1-0,0
Is there enou		.7	7		vviio was	iounca:	PA11C		
	_	ere applicable?	F		MS/MSD?	£			
Proper Media	-		Ť		Is splitting sa	amples rec	wired?	£	
Were trip bla			` c		On COC?	-	quircu:		
Do all sample			<u> </u>	Acid	M12 -		- Base		
Vials	#	Containers:	#	•	-0	#			#
Unp-	T	1 Liter Amb.	T .	1 Liter	Plastic	ザ フ	16.0	z Amb.	n
HCL-	3	500 mL Amb.		500 mL		<u></u>		nb/Clear	
Meoh-		250 mL Amb.		250 mL		2		nb/Clear	
Bisulfate-		Flashpoint		Col./Ba		1		nb/Clear	
DI-		Other Glass		Other F		······································		core	
Thiosulfate-	*********	SOC Kit		Plastic			Frozen:		
Sulfuric-	·····	Perchlorate		Ziple	ock]		
				Unused N	Vledia				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.		1 Liter	Plastic		16 oz	z Amb.	
HCL-		500 mL Amb.		500 mL	Plastic		8oz An	nb/Clear	
Meoh-		250 mL Amb.		250 mL	Plastic		4oz An	nb/Clear	• •
Bisulfate-		Col./Bacteria		Flash	point		2oz An	nb/Clear	
DI-		Other Plastic		Other	Glass		En	core	
Thiosulfate-		SOC Kit	***************************************	Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo	ock				
Comments:	dan	Turn cound	time ,	per J.	L. H.				
	day	Turn cound	time !	per J.	l.H.				

ANALYTICAL REPORT

Lab Number: L2138430

Client: Coneco Engineers & Scientists, Inc.

4 First Street

Bridgewater, MA 02324

ATTN: Marc Brochu Phone: (508) 697-3191 75-79 POND ST.

Project Name:

3395 Project Number: Report Date: 07/28/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 75-79 POND ST.

Project Number: 3395

 Lab Number:
 L2138430

 Report Date:
 07/28/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2138430-01	WELL-1	WATER	ROCKLAND, MA	07/15/21 12:05	07/16/21
L2138430-02	WELL-2	WATER	ROCKLAND, MA	07/15/21 13:20	07/16/21
L2138430-03	WELL-3	WATER	ROCKLAND, MA	07/15/21 14:25	07/16/21
L2138430-04	FIELD BLANK	WATER	ROCKLAND, MA	07/15/21 13:30	07/16/21

Project Name:75-79 POND ST.Lab Number:L2138430Project Number:3395Report Date:07/28/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:75-79 POND ST.Lab Number:L2138430Project Number:3395Report Date:07/28/21

Case Narrative (continued)

Perfluorinated Alkyl Acids by Isotope Dilution

L2138430-01: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (5%), however this does not apply to the abbreviated list of target analytes reported.

L2138430-02: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (8%), 1h,1h,2h,2h-perfluoro[1,2-13c2]hexanesulfonic acid (m2-4:2fts) (151%), and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (156%), however these do not apply to the abbreviated list of target analytes reported.

WG1526105-1: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jusen & Med Susan O' Neil

Title: Technical Director/Representative Date: 07/28/21

ORGANICS

SEMIVOLATILES

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

07/21/21 20:02

Lab ID: Date Collected: 07/15/21 12:05

Client ID: WELL-1 Date Received: 07/16/21
Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 07/21/21 04:35

Analyst: MP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilu	tion - Mansfiel	d Lab					
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.89		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.89		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.89		1	
Perfluorohexanesulfonic Acid (PFHxS)	2.20		ng/l	1.89		1	
Perfluorooctanoic Acid (PFOA)	2.78		ng/l	1.89		1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.89		1	
Perfluorooctanesulfonic Acid (PFOS)	3.52	F	ng/l	1.89		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.89		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.89		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.89		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.89		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.89		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.89		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.89		1	

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

Lab ID: L2138430-01 Date Collected: 07/15/21 12:05

Client ID: WELL-1 Date Received: 07/16/21 Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	105		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	141		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	111		12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	119		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	100		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	102		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	106		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	93		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	5	Q	10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	84		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	81		22-136	

Project Name: Lab Number: 75-79 POND ST. L2138430

Project Number: Report Date: 3395 07/28/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/15/21 13:20 L2138430-02

Date Received: Client ID: WELL-2 07/16/21 Sample Location: Field Prep: ROCKLAND, MA Not Specified

07/21/21 20:18

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 07/21/21 04:35 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: MP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilu	tion - Mansfiel	d Lab				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.88		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.88		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.88		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.88		1
Perfluorooctanoic Acid (PFOA)	2.78		ng/l	1.88		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.88		1
Perfluorooctanesulfonic Acid (PFOS)	8.03	F	ng/l	1.88		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.88		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.88		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.88		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.88		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.88		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.88		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.88		1

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

Lab ID: L2138430-02 Date Collected: 07/15/21 13:20

Client ID: WELL-2 Date Received: 07/16/21 Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	92		58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102		62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	93		70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	151	Q	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	87		57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85		60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94		71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89		62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	156	Q	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	92		59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96		69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	79		62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101		10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	75		24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	81		55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	8	Q	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	73		48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	64		22-136

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

Lab ID: L2138430-03 Date Collected: 07/15/21 14:25

Client ID: WELL-3 Date Received: 07/16/21 Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 07/21/21 04:35

Analyst: MP

07/21/21 20:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.86		1
Perfluorohexanoic Acid (PFHxA)	2.63		ng/l	1.86		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.86		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.86		1
Perfluorooctanoic Acid (PFOA)	3.36		ng/l	1.86		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.86		1
Perfluorooctanesulfonic Acid (PFOS)	1.97		ng/l	1.86		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.86		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86		1

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

Lab ID: L2138430-03 Date Collected: 07/15/21 14:25

Client ID: WELL-3 Date Received: 07/16/21 Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	87	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	105	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	121	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	87	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	87	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	122	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	93	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	111	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	85	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	13	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	88	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	72	22-136

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

L2138430-04

07/21/21 20:52

Date Collected: 07/15/21 13:30

Client ID: FIELD BLANK Date Received: 07/16/21 Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 07/21/21 04:35

Analyst: MP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilu	tion - Mansfiel	d Lab					
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.83		1	
Perfluorohexanoic Acid (PFHxA)	4.05		ng/l	1.83		1	
Perfluoroheptanoic Acid (PFHpA)	18.4		ng/l	1.83		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.83		1	
Perfluorooctanoic Acid (PFOA)	7.87		ng/l	1.83		1	
Perfluorononanoic Acid (PFNA)	50.3		ng/l	1.83		1	
Perfluorooctanesulfonic Acid (PFOS)	2.14	F	ng/l	1.83		1	
Perfluorodecanoic Acid (PFDA)	11.3		ng/l	1.83		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.83		1	
Perfluoroundecanoic Acid (PFUnA)	12.5		ng/l	1.83		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.83		1	
Perfluorododecanoic Acid (PFDoA)	1.87		ng/l	1.83		1	
Perfluorotridecanoic Acid (PFTrDA)	3.50		ng/l	1.83		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.83		1	

Project Name: 75-79 POND ST. **Lab Number:** L2138430

Project Number: 3395 Report Date: 07/28/21

SAMPLE RESULTS

Lab ID: L2138430-04 Date Collected: 07/15/21 13:30

Client ID: FIELD BLANK Date Received: 07/16/21 Sample Location: ROCKLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	92	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	106	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	96	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	98	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	92	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	91	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	93	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	91	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	84	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	97	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	30	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	92	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	84	22-136

Project Name: 75-79 POND ST.

Project Number: 3395

Lab Number:

L2138430

Report Date: 07/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 07/21/21 14:27

Analyst:

MP

Extraction Method: ALPHA 23528 Extraction Date: 07/21/21 04:35

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield L	_ab for s	ample(s): C	1-04 Batch:	WG1526105-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		

Acceptance

L2138430

Project Name: 75-79 POND ST. **Lab Number:**

Project Number: 3395 Report Date: 07/28/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 07/21/21 14:27 Extraction Date: 07/21/21 04:35

Analyst: MP

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-04 Batch: WG1526105-1

			Acceptance
Surrogate	%Recovery		Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	120		58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	135		62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	127		70-131
H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	145	Q	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	125		57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	118		60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	122		71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	118		62-129
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	141		14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	124		59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	122		69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	119		62-124
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	136		10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	92		24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	121		55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	34		10-112
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	103		27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	110		48-131
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	105		22-136
,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid M3HFPO-DA)	128		10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	117		10-206
H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	155	Q	50-150

Lab Control Sample Analysis Batch Quality Control

Project Name: 75-79 POND ST.

Project Number: 3395

Lab Number: L2138430

Parameter	LCS %Recovery	•	LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample	e(s): 01-04	Batch:	WG1526105-2				
Perfluorobutanesulfonic Acid (PFBS)	92		-		65-157	-		30	
Perfluorohexanoic Acid (PFHxA)	91		-		69-168	-		30	
Perfluoroheptanoic Acid (PFHpA)	92		-		58-159	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	92		-		69-177	-		30	
Perfluorooctanoic Acid (PFOA)	94		-		63-159	-		30	
Perfluorononanoic Acid (PFNA)	90		-		68-171	-		30	
Perfluorooctanesulfonic Acid (PFOS)	101		-		52-151	-		30	
Perfluorodecanoic Acid (PFDA)	90		-		63-171	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	97		-		60-166	-		30	
Perfluoroundecanoic Acid (PFUnA)	87		-		60-153	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	96		-		45-170	-		30	
Perfluorododecanoic Acid (PFDoA)	90		-		67-153	-		30	
Perfluorotridecanoic Acid (PFTrDA)	106		-		48-158	-		30	
Perfluorotetradecanoic Acid (PFTA)	94		-		59-182	-		30	

07/28/21

Lab Control Sample Analysis Batch Quality Control

Project Name: 75-79 POND ST.

Lab Number: L2138430

Project Number: 3395

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-04 Batch: WG1526105-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	101				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	114				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	105				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	126				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	105				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	99				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	98				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	129				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	102				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	125				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	104				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	31				10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	96				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	95				22-136
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	103				10-165
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	103				10-206
1H,1H,2H,2H-Perfluorododecane Sulfonate (M2D4-10:2FTS)	129				50-150

Matrix Spike Analysis Batch Quality Control

Project Name: 75-79 POND ST.

Project Number: 3395

Lab Number:

L2138430

Report Date:

07/28/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is Sample	otope Dilution	- Mansfield	Lab Associ	ated sample(s):	01-04	QC Batch	ID: WG152610	5-3	QC Sample:	L213838	6-01	Client ID:	MS
Perfluorobutanoic Acid (PFBA)	13.8	35	46.3	93		-	-		67-148	-		30	
Perfluoropentanoic Acid (PFPeA)	14.9	35	47.2	92		-	-		63-161	-		30	
Perfluorobutanesulfonic Acid (PFBS)	4.06	31.1	33.2	94		-	-		65-157	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	32.8	34.0	104		-	-		37-219	-		30	
Perfluorohexanoic Acid (PFHxA)	11.4	35	44.0	93		-	-		69-168	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	32.9	35.2	107		-	-		52-156	-		30	
Perfluoroheptanoic Acid (PFHpA)	8.08	35	41.7	96		-	-		58-159	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	4.42	32	36.7	101		-	-		69-177	-		30	
Perfluorooctanoic Acid (PFOA)	43.1	35	76.1	94		-	-		63-159	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	28.1	33.3	55.1	81		-	-		49-187	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	33.3	31.6	95		-	-		61-179	-		30	
Perfluorononanoic Acid (PFNA)	3.63	35	34.5	88		-	-		68-171	-		30	
Perfluorooctanesulfonic Acid (PFOS)	24.5	32.5	56.9	100		-	-		52-151	-		30	
Perfluorodecanoic Acid (PFDA)	ND	35	33.1	92		-	-		63-171	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	33.6	30.9	92		-	-		56-173	-		30	
Perfluorononanesulfonic Acid (PFNS)	ND	33.7	30.5	91		-	-		48-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	35	29.8	85		-	-		60-166	-		30	
Perfluoroundecanoic Acid (PFUnA)	ND	35	28.8	82		-	-		60-153	-		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	33.7	27.2	81		-	-		38-156	-		30	
Perfluorooctanesulfonamide (FOSA)	ND	35	29.1	83		-	-		46-170	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	35	31.2	89		-	-		45-170	-		30	
Perfluorododecanoic Acid (PFDoA)	ND	35	28.3	81		-	-		67-153	-		30	

Matrix Spike Analysis Batch Quality Control

Project Name: 75-79 POND ST.

Project Number: 3395

Lab Number:

L2138430

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Sample	sotope Dilutio	n - Mansfield	Lab Associa	ated sample(s)	: 01-04	QC Batch	ID: WG152610	5-3	QC Sample:	L213838	36-01	Client ID: MS
Perfluorotridecanoic Acid (PFTrDA)	ND	35	33.9	97		-	-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	35	29.3	84		-	-		59-182	-		30

	MS	5	MS	SD	Acceptance
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	367	Q			10-162
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	277	Q			12-142
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	420	Q			14-147
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	118				27-126
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	114				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	90				55-137
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81				62-124
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	68				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	82				71-134
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	80				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	79				22-136
Perfluoro[13C4]Butanoic Acid (MPFBA)	86				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	64				62-163
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26				10-112
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89				69-131
Perfluoro[13C8]Octanoic Acid (M8PFOA)	85				62-129
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	100				59-139
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	82				70-131

Lab Duplicate Analysis Batch Quality Control

Project Name: 75-79 POND ST.

Project Number: 3395

Lab Number: L21

L2138430

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - ID: DUP Sample	Mansfield Lab Associated sa	mple(s): 01-04 QC B	Batch ID: WG152	6105-4 (QC Sample: L2138386-04 Client
Perfluorobutanoic Acid (PFBA)	24.3	24.6	ng/l	1	30
Perfluoropentanoic Acid (PFPeA)	9.34	9.73	ng/l	4	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	4.24	4.39	ng/l	3	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	2.49	2.55	ng/l	2	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	34.7	28.4	ng/l	20	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC	30

L2138430

Lab Duplicate Analysis Batch Quality Control

Project Name: 75-79 POND ST.

Project Number: 3395

Quality Control Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - ID: DUP Sample	- Mansfield Lab Associated sar	mple(s): 01-04 QC E	Batch ID: WG152	6105-4 Q	C Sample: L2138386-04 Client
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
		Qualifici		Qualifici		
Perfluoro[13C4]Butanoic Acid (MPFBA)	87		91		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	103		108		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102		99		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	181	Q	171	Q	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	89		93		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84		87		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	101		100		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90		92		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	181	Q	167	Q	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90		94		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98		96		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	84		87		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	118		109		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	80		87		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	84		90		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	13		11		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	83		89		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	85		87		48-131	

Lab Duplicate Analysis

Batch Quality Control Lab Number: L2138430

Project Number: 3395 Report Date: 07/28/21

RPD

Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-04 QC Batch ID: WG1526105-4 QC Sample: L2138386-04 Client ID: DUP Sample

Surrogate %Recovery Qualifier %Recovery Qualifier Criteria

Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 77 81 22-136

Project Name:

75-79 POND ST.

Project Name: 75-79 POND ST. Lab Number: L2138430

Project Number: 3395 Report Date: 07/28/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2138430-01A	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)
L2138430-01B	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)
L2138430-02A	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)
L2138430-02B	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)
L2138430-03A	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)
L2138430-03B	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)
L2138430-04A	Plastic 250ml unpreserved	Α	NA		4.6	Υ	Absent		A2-537-ISOTOPE(14)

Serial_No:07282119:49 **Lab Number:** L2138 **Project Name:** L2138430 75-79 POND ST.

Project Number: 3395 Report Date: 07/28/21

PFAS PARAMETER SUMMARY

PFODA PFHxDA PFTA PFTrDA PFDoA PFUnA PFDA PFNA PFOA PFHpA PFHxA PFPeA PFBA	16517-11-6 67905-19-5 376-06-7 72629-94-8 307-55-1 2058-94-8 335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3 375-22-4
PFHxDA PFTA PFTTDA PFDOA PFUNA PFDA PFNA PFOA PFHPA PFHXA PFPBA PFBA	67905-19-5 376-06-7 72629-94-8 307-55-1 2058-94-8 335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFTA PFTrDA PFDOA PFUNA PFDA PFNA PFOA PFHPA PFHXA PFPBA PFBA	67905-19-5 376-06-7 72629-94-8 307-55-1 2058-94-8 335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFTrDA PFDoA PFUnA PFDA PFNA PFOA PFHPA PFHXA PFPeA PFBA	72629-94-8 307-55-1 2058-94-8 335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFDoA PFUnA PFUnA PFNA PFNA PFOA PFHPA PFHXA PFPeA PFBA	307-55-1 2058-94-8 335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFUnA PFDA PFNA PFOA PFHPA PFHXA PFPeA PFBA	2058-94-8 335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFDA PFNA PFOA PFHpA PFHxA PFPeA PFBA	335-76-2 375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFNA PFOA PFHpA PFHxA PFPeA PFBA PFDoDS	375-95-1 335-67-1 375-85-9 307-24-4 2706-90-3
PFOA PFHpA PFHxA PFPeA PFBA	335-67-1 375-85-9 307-24-4 2706-90-3
PFHpA PFHxA PFPeA PFBA PFDoDS	375-85-9 307-24-4 2706-90-3
PFHxA PFPeA PFBA PFDoDS	307-24-4 2706-90-3
PFPeA PFBA PFDoDS	2706-90-3
PFBA PFDoDS	
PFD ₀ DS	375-22-4
DEDO	79780-39-5
PFDS	335-77-3
PFNS	68259-12-1
PFOS	1763-23-1
PFHpS	375-92-8
PFHxS	355-46-4
PFPeS	2706-91-4
PFBS	375-73-5
10:2FTS	120226-60-0
8:2FTS	39108-34-4
6:2FTS	27619-97-2
4:2FTS	757124-72-4
FOSA	754-91-6
NEtFOSA	4151-50-2
NMeFOSA	31506-32-8
NEtFOSE	1691-99-2
NMeFOSE	24448-09-7
NEtFOSAA	2991-50-6
NMeFOSAA	2355-31-9
HFPO-DA	13252-13-6
ADONA	919005-14-4
11CI-PF3OUdS	763051-92-9
9CI-PF3ONS	756426-58-1
PFEESA	113507-82-7
PFMPA	377-73-1
	· · • • ·
PFMBA	
PFMBA NFDHA	863090-89-5 151772-58-6
	6:2FTS 4:2FTS FOSA NEtFOSA NMeFOSA NEtFOSE NMeFOSE NMeFOSA NMeFOSAA NMeFOSAA HFPO-DA ADONA 11CI-PF3OUdS 9CI-PF3ONS

Project Name: Lab Number: 75-79 POND ST. L2138430

Report Date: Project Number: 3395 07/28/21

GLOSSARY

Acronyms

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:75-79 POND ST.Lab Number:L2138430Project Number:3395Report Date:07/28/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:75-79 POND ST.Lab Number:L2138430Project Number:3395Report Date:07/28/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:75-79 POND ST.Lab Number:L2138430Project Number:3395Report Date:07/28/21

REFERENCES

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19

ID No.:17873

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

								361	Idi_110.07202119.49
Дірна	CHAIN O	F CUSTO	DY	PAGEJ.	_ar	- Date Rec'd i	in Lab: 7/10/a/	ALPH	A Job#: L2 3843
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 50 8- 822-9300	Project Informa	ition			Report Inf	ormation - Data Delivera	ables Billing	Information
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: 7 5	-77 P	and 2	+	□ FAX	\$ EMAIL	1≱ Same	as Client info PO#: 3395
Client Information	on	Project Location:	LOCKI	and,	MA	□ ADEx	☐ Add'l Deliverables		
Client: Conelo ;	Engineers & Scientisb	Project#: 33	95			Regulatory	Requirements/Report L	imits	Maria Service
Address: 4 Fi	rst ct	Project Manager: N	1000	3 roch	0	State /Fed Pi	rogram Criter	ia R(6W-1	
	lates MA	ALPHA Quote #:		- 100.00		-	-	-	
Phone: 50%.	- 497-3191	Turn-Around T	me	EVIEW.	Sec. 4	DESCRIPTION OF THE PERSON OF T		100	RESIDENCE PROPERTY.
Fax:					- 100				
	ney, MBrocho, com	Standard Date Due:	⊒ RUSH,•	Time:	epproud ^a l	2 2	//////	777	/ / _/
	ive been proviously analyzed by Alpha Specific Requirements/Comp	1				2 3		1///	SAMPLE HANDLING
						45 LCASUS-16W	/////	////	Filtration □ Done ☑ Not needed □ Lab to do Preservation □ Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	Col Date	lection Time	Sample Matrix	Sampler's Initials	PFAMS	/////	////	(Please specify ballow) Sample Specific Comments
38430-d	WELL - 1	7/15/21	1205	GW	DCK	X			and the second community
-0a	MELL-3	7/15/21	1320	GW	DOK	X			
-03	WELL-3	7/15/21	1425	GW	DIK	X			
-04	Field Blank	7/15/21	1330	GW	DOK	X			
						/			
							1		
					ainer Type eservative	P			Please print clearly, legibly and co pletely. Samples can not be logge
		Relinquished By:	_		te/Time			Du In	in and tumaround time clock will n
	12-			7/15/3	-	727	eceived By:	Date/Time	start until any ambiguitles are reso All samples submitted are subject
ORM NO- 01-01 (rev. 14-0) Page 31 of 31	CT-07)	- nov.		7/62 (16 45	m	- hor	1167 1250 1167 1645 7116121 240	Alphe's Terms and Conditions. See reverse side,